РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(19)
RU
(11)
(13)
C2
(51) МПК
(52) СПК
  • G01T 1/18 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
Пошлина:
действует (последнее изменение статуса: 26.03.2019)
учтена за 4 год с 10.03.2019 по 09.03.2020

(21)(22) Заявка: 2016108442, 09.03.2016

(24) Дата начала отсчета срока действия патента:
09.03.2016

Дата регистрации:
12.01.2018

Приоритет(ы):

(22) Дата подачи заявки: 09.03.2016

(43) Дата публикации заявки: 14.09.2017 Бюл. № 26

(45) Опубликовано: 12.01.2018 Бюл. № 2

(56) Список документов, цитированных в отчете о поиске: SU 306770 A1, 30.10.1983. US 7859673 B2, 28.12.2010. WO 2014128101 A1, 28.08.2014. SU 417751 A2, 28.02.1974. SU 379892 A1, 20.04.1973.

Адрес для переписки:
142281, Московская обл., г. Протвино, пл. Науки, 1, ФГБУ ГНЦ РФ ИФВЭ

(72) Автор(ы):
Крышкин Виктор Иванович (RU),
Скворцов Виктор Васильевич (RU)

(73) Патентообладатель(и):
ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ ГОСУДАРСТВЕННЫЙ НАУЧНЫЙ ЦЕНТР РОССИЙСКОЙ ФЕДЕРАЦИИ ИНСТИТУТ ФИЗИКИ ВЫСОКИХ ЭНЕРГИЙ (RU)

(54) МОНИТОР

(57) Реферат:

Изобретение относится к ускорительной технике и может быть использовано в ядерной физике и астрофизике. Монитор для измерения интенсивности пучка заряженных частиц, состоящий из сцинтилляционного счетчика, отличающийся тем, что сигнал с анода фотоумножителя через гальваническую связь поступает на электронную схему, состоящую из операционного усилителя, усиливающего и раздваивающего сигнал, при этом один сигнал посылается на формирователь импульсов, а другой на усилитель, с выхода которого подается на конденсатор, на котором суммируется заряд в течение цикла измерения интенсивности, затем конденсатор разряжается на преобразователь напряжение-частота, цуг импульсов с которого поступает на формирователь импульсов, а затем с формирователей импульсов сигналы поступают на счетчики импульсов. Технический результат – увеличение диапазона измеряемых интенсивностей и самокалибровка детектора. 1 ил.


Изобретение относится к ускорительной технике и может быть использовано в ядерной физике и астрофизике.

Известна ионизационная камера для измерения интенсивности пучков заряженных частиц, состоящая из двух электродов, между которыми находится газ, установленных перпендикулярно пучку падающих частиц [Д. Ритсон. Экспериментальные методы в физике высоких энергий. Издательство "Наука", 1964, с. 500]. Между электродами подается напряжение, под влиянием которого электроны ионизации, образованные проходящим пучком, собираются на сигнальном электроде и регистрируются электронными схемами. Если сигнальный электрод сплошной, то регистрируемый сигнал пропорционален интенсивности падающего пучка.

Прототипом заявляемого изобретения является устройство, которое состоит из сцинтиллятора и фотоэлектронного умножителя (ф.э.у.) [А.И. Абрамов и др. Основы экспериментальных методов ядерной физики. М.: Атомиздат, 1977]. Анод ф.э.у. соединен с формирователем импульсов, выход которого соединен со счетчиком импульсов. При прохождении через сцинтиллятор заряженной частицы в ф.э.у. возникает электрический импульс, он поступает на формирователь, а затем на счетчик импульсов. Это устройство, установленное на пучке заряженных частиц, регистрирует число частиц за цикл и определяет интенсивность. При длительности импульса с формирователя около 10-8 с количество просчетов при интенсивности 107 частиц/с будет 10% при статистически распределенных во времени частиц в пучке. Если пучок имеет нестатистическую равномерность, что типично для ускорителей, то число просчетов возрастает неконтролируемым образом. Поэтому такие мониторы интенсивности пучка надежно работают до интенсивностей около 106 частиц/с. Основным недостатком таких детекторов являются просчеты при интенсивностях выше 106 частиц/с (наложение импульсов).

У таких устройств имеется недостаток: ионизационные камеры являются относительными приборами, требуется отдельный детектор и отдельные измерения для калибровки.

Задача изобретения: расширение диапазона измеряемых интенсивностей и абсолютная калибровка монитора без привлечения дополнительных детекторов.

Технический результат - увеличение диапазона изменяемых интенсивностей и самокалибровка детектора.

Технический результат обеспечивается тем, что в устройстве содержатся две части: счетная и интегрирующая, позволяющая измерять интенсивность пучка.

На фигуре 1 изображено заявляемое устройство. Оно включает сцинтиллятор 1, ф.э.у. 2, анодное сопротивление 3, операционные усилители 4 и 5, конденсатор 6, преобразователь напряжения-частота 7, формирователи импульсов 8 и 9.

Монитор работает следующим образом. Заряженные частицы пучка, проходящие через сцинтиллятор 1, создают в ф.э.у. 2 электрические импульсы тока на сопротивлении 3. Соединенная через гальваническую связь электронная схема, состоящая из операционного усилителя 4, усиливает и раздваивает сигнал, посылая один сигнал на формирователь 8, а другой - на усилитель 5, с выхода которого сигнал подается на конденсатор 6, на котором суммируется заряд в течение цикла измерения интенсивности. Этот конденсатор затем разряжается на преобразователь напряжение-частота 7. Цуг импульсов с этого преобразователя поступает на формирователь 9. Выходы с обоих формирователей 8, 9 поступают на счетчики импульсов.

При интенсивности пучка 104-106 частиц/с просчетами сцинтилляционного счетчика можно пренебречь, и соотношение между числом отсчетов с него и числом отсчетов с преобразователя 7 является абсолютной калибровкой монитора. При интенсивности пучка выше 106 частиц/с просчетами нельзя пренебречь, а канал измерения заряда будет оставаться линеен до величины, определяемой линейностью ф.э.у., что соответствует интенсивностям практически на порядок величины выше, чем у счетного канала.

Преимущества:

- линейность детектора в широком диапазоне интенсивностей;

- для абсолютной калибровки монитора не требуется привлечения дополнительных детекторов;

- возможность использования стандартного сцинтилляционного счетчика без дополнительных переделок.

Формула изобретения

Монитор для измерения интенсивности пучка заряженных частиц, состоящий из сцинтилляционного счетчика, отличающийся тем, что сигнал с анода фотоумножителя через гальваническую связь поступает на электронную схему, состоящую из операционного усилителя, усиливающего и раздваивающего сигнал, при этом один сигнал посылается на формирователь импульсов, а другой на усилитель, с выхода которого подается на конденсатор, на котором суммируется заряд в течение цикла измерения интенсивности, затем конденсатор разряжается на преобразователь напряжение-частота, цуг импульсов с которого поступает на формирователь импульсов, а затем с формирователей импульсов сигналы поступают на счетчики импульсов.