РОССИЙСКАЯ ФЕДЕРАЦИЯ

ФЕДЕРАЛЬНАЯ СЛУЖБА
ПО ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ
(19)
RU
(11)
(13)
C1
(51) МПК
(52) СПК
  • C22B 11/00 (2006.01)
  • C25C 1/20 (2006.01)
(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ
Статус:
Пошлина:
действует (последнее изменение статуса: 26.06.2019)
учтена за 4 год с 16.11.2019 по 15.11.2020

(21)(22) Заявка: 2016144893, 15.11.2016

(24) Дата начала отсчета срока действия патента:
15.11.2016

Дата регистрации:
03.05.2018

Приоритет(ы):

(22) Дата подачи заявки: 15.11.2016

(45) Опубликовано: 03.05.2018 Бюл. № 13

(56) Список документов, цитированных в отчете о поиске: RU 2181780 C2, 27.04.2002. RU 94044283 A1, 20.10.1996. CN 103572322 A, 12.02.2014. JP 2005060832 A, 10.03.2005. RU 2357012 C1, 27.05.2009.

Адрес для переписки:
423250, Респ. Татарстан, г. Лениногорск, а/я 250, ООО "НПФ "Модуль"

(72) Автор(ы):
Совка Сергей Марциянович (RU),
Малыхин Игорь Александрович (RU),
Пелипенко Олег Владимирович (RU)

(73) Патентообладатель(и):
Совка Сергей Марциянович (RU),
Малыхин Игорь Александрович (RU),
Пелипенко Олег Владимирович (RU)

(54) Способ электрохимической переработки золотосодержащего сплава

(57) Реферат:

Изобретение относится к гидрометаллургии благородных металлов. Электрохимическая переработка золотосодержащего сплава включает его анодное растворение с последующим восстановлением золота на катоде с использованием электролита. В качестве электролита используют сернокислотный раствор нитрата аммония и хлорида натрия. Способ позволяет получить золото с высокой степенью чистоты из анодного материала различного состава.


Изобретение относиться к гидрометаллургии благородных металлов.

Известны методы анодного электролитического аффинирования, включающие растворение золотосодержащего материала в растворах, состоящих из соляной кислоты, азотной кислоты, их смесей в различных соотношениях, а также в цианидсодержащих растворах. Азотно-солянокислые растворы отличает высокая анодная растворимость основного компонента - золота, однако, эти растворы отличает также высокая токсичность по факту наличия легколетучих соединений, а также высокая растворимость по отношению ко всем остальным содержащимся в исходном анодном материале элементам, в том числе свинцу, олову и др., а также несмотря на то, что например, серебро образует при анодном растворении малорастворимый хлорид серебра, его произведение растворимости в высококонцентрированных солянокислых растворах увеличивается с возможностью загрязнения катодного осадка золота, а также за счет увеличения концентрационных величин элементов, растворимых в азотно-солянокислой среде с возможностью загрязнения катодного осадка золота за счет в том числе сорбционных процессов. Проблемы применения азотно-солянокислых растворов с целью электролитического аффинирования металлов связаны в том числе и с завышенной стоимостью применяемых реагентов, а также сложностью их последующей утилизации. Можно обратить внимание и на тот факт, что одним из недостатков получения катодных осадков из азотно-солянокислых растворов является необходимость проведения электролизных процессов с перенапряжением, отчего зависит сложность управления вольт-амперными характеристиками процесса, следствием чего становится проблематичным получение достаточно однородных катодных осадков.

Основными недостатками анодного растворения в среде цианидных растворов являются достаточно низкая избирательность получения катодных осадков по основному материалу – золоту из-за перехода в раствор водорастворимых соединений серебра и др., с последующим загрязнением катодного осадка, а также необходимость поддержания достаточно жестких условий проведения электролизных процессов, связанных с возможностью образования высокотоксичных легколетучих цианистых соединений. Существенным недостатком любых электролитических аффинажных процессов, связанных с применением цианидных растворов, является необходимость применения большого объема оборотных растворов, следствием чего является и проблема их утилизации.

Предлагаемый в способе изобретения сернокислотный тип электролита, в общем, лишен вышеперечисленных недостатков, то есть позволяет реализовать электролизные процессы с высокими концентрационными параметрами по переводу в раствор основного - золотоматериала, с минимизацией присутствия в растворе водорастворимых соединений, например свинца и серебра, что позволяет получать катодные осадки с отсутствием этих примесей уже на первой стадии электролитического аффинирования.

Реализация способа осуществляется следующим образом. В стандартную электролитическую ячейку с размещенными в ней катодом, состоящим из различного типа электропроводного материала, например титан, химически чистое золото, углерод и др., и анодом, состоящим из электропроводного сплава, содержащим благородные металлы, в том числе золото, а в качестве электролита используется сернокислотный раствор хлорида натрия и нитрата аммония в различных концентрационных соотношениях, вариант с возможной заменой нитрата аммония на нитраты щелочных металлов не рассматривается. Процесс анодного растворения сопровождается переходом в раствор Au, Ni, Fe, Cu и т.д., катодный осадок представляет собой Au или AuCu при достаточно высоких содержаниях Сu в анодном материале, анодный «шлам» представляет собой осадок, содержащий AgCl, PbSO4, Pt, Rh, Ru, Ir и др. Попадание небольших количеств меди, содержащейся в анодном материале, подвергаемом электролитическому аффинированию в катодный осадок, возможно предотвратить за счет ее удержания в «хвостовых» остатках электролита на последних стадиях электролизных процессов. Обращаем внимание на то обстоятельство, что при азотно-солянокислотном и цианидном электролитическом аффинировании невозможно предотвратить попадание меди в катодные осадки при достаточно высоких ее концентрациях в анодном материале, в патентных разработках данный факт особо не афишируется.

Технико-экономическим эффектом является использование легкодоступных химических реагентов с низкой стоимостью, получение высококонцентрированного по основному веществу - золоту катодного осадка уже на первой стадии электролитического аффинирования, заниженная токсичность производственного процесса по отношению к азотно-солянокислым и цианидным растворам электролитов, большая глубина катодного извлечения основного материала - золота из оборачиваемых растворов, хорошая управляемость процессом электролитического аффинирования как за счет изменения концентрационных составляющих электролита, так и электроуправляющими процессами за счет изменения межэлектродной разности потенциалов с изменением плотностных характеристик катодного тока. Возможность получения высокопробного катодного материала - золота по факту реализации предлагаемого способа изобретения с переводом материала с заниженными пробными характеристиками, например 99. или 99,9. в материал 99,99 или 99,999, что позволит перевести, например, весь золотой запас - - золото - в более высокопробный со всеми вытекающими из этого экономическими последствиями.

Формула изобретения

Способ электрохимической переработки золотосодержащего сплава, включающий анодное растворение золотосодержащего сплава с последующим восстановлением золота на катоде с использованием электролита, отличающийся тем, что в качестве электролита используют сернокислотный раствор нитрата аммония и хлорида натрия.